Sheffer and Non-Sheffer Polynomial Families
نویسندگان
چکیده
1 Gruppo Fisica Teorica e Matematica Applicata, Unità Tecnico Scientifica Tecnologie Fisiche Avanzate, ENEA-Centro Ricerche Frascati, C.P. 65, Via Enrico Fermi 45, 00044 Frascati, Rome, Italy 2 Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Sapienza Università di Roma, Via A. Scarpa 14, 00161 Roma, Italy 3 International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39 00186 Rome, Italy
منابع مشابه
Heat Polynomials, Umbral Correspondence and Burgers Equations.
We show that the umbral correspondence between differential equations can be achieved by means of a suitable transformation preserving the algebraic structure of the problems. We present the general properties of these transformations, derive explicit examples and discuss them in the case of the Appèl and Sheffer polynomial families. We apply these transformations to non-linear equations, and d...
متن کاملRiordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials
Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...
متن کاملThe Characterization of Riordan Arrays and Sheffer-type Polynomial Sequences
Here we present a characterization of Sheffer-type polynomial sequences based on the isomorphism between the Riordan group and Sheffer group and the sequence characterization of Riordan arrays. We also give several alternative forms of the characterization of the Riordan group, Sheffer group and their subgroups. Formulas for the computation of the generating functions of Riordan arrays and Shef...
متن کاملOrthogonal Polynomials with a Resolvent-type Generating Function
ABSTRACT. The subject of this paper are polynomials in multiple non-commuting variables. For polynomials of this type orthogonal with respect to a state, we prove a Favardtype recursion relation. On the other hand, free Sheffer polynomials are a polynomial family in non-commuting variables with a resolvent-type generating function. Among such families, we describe the ones that are orthogonal. ...
متن کاملSelf - Inverse Sheffer Sequences and Riordan
In this short note we focus on self-inverse Sheffer sequences and involutions in the Riordan group. We translate the results of Brown and Kuczma on self-inverse sequences of Sheffer polynomials to describe all involutions in the Riordan group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012